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The pinch-off of a gas bubble from a tiny nozzle immersed vertically in another quiescent viscous fluid due
to buoyancy is numerically investigated. The dynamics of bubble growth and pinch-off are described by the
full Navier-Stokes equations for both gas and liquid phases. The equations are solved with a finite-volume
method based on the SIMPLE scheme, coupled with a front tracking method to locate the interface between the
two phases. The effects of liquid viscosity, surface tension, and gas density on the bubble pinch-off dynamics,
which are always coupled in experiments, are investigated separately through simulations. The numerical
results are compared with experimental observations on the bubble pinch-off for validation purposes. The
simulation results show that the radius of the necking region decreases in a power law mode with time as r
���, where � is the time to pinch-off and the exponent � varies in the range 0.5–1.0 depending strongly upon
the liquid properties such as viscosity and surface tension. In addition, the surface tension can significantly
affect the bubble pinch-off exponent � when the surface tension coefficient is smaller than 0.030 N/m with a
Bond number higher than 0.72. It is also found that both higher viscosity of the liquid phase and higher surface
tension may result in a delayed pinch-off process and a larger bubble. The effect of gas phase density on the
pinch-off is also investigated. As reported in the literature, the gas density variation has minimal effect on the
necking process because the density ratio of the gas phase to the liquid phase is small.
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I. INTRODUCTION

Bubbles and drops exist widely in nature, our daily life,
and industrial processes. Knowledge of the bubble and drop
generation mechanism is one of the key essentials for under-
standing complex and important flow phenomena. Bubbles
or drops are usually created through the pinch-off of the
interface between two immiscible fluids. It has been a sub-
ject receiving considerable research interest for decades. For
example, the breakup of a dense drop immersed in a back-
ground fluid of small or negligible viscosity �or density� has
been extensively studied. Eggers �1� presented a comprehen-
sive review of drop breakup. Investigations �2–4� showed
that the power law of the filament necking radius and the
geometric shape of the filament are universal.

However, the recent experimental work by Doshi et al. �5�
on the pinch-off of a drop with low viscosity inside a much
more viscous fluid revealed that the universality, which had
been proven valid in the pinch-off process of a viscous liquid
drop in a less viscous or inviscid background fluid, breaks
down in their configuration. This indicates that the dynamics
of gas bubble pinch-off in a viscous liquid is different from
that of liquid drop dripping in gas. The bubble pinch-off in a
viscous liquid is receiving more and more research interest.
Keim et al. �6� studied the behavior of an air bubble detach-
ing from an underwater nozzle using a high-speed video
camera. Their observations showed that, for air bubble
breakup in water, a small asymmetry in the initial condition
is preserved throughout the whole breakup process because
the surface tension is not the driving factor for the breakup,
so the universality is lost. Burton et al. �7� reported experi-

mental studies on the pinch-off of gas bubbles in viscous
liquids with a wide range of viscosity, using a video of
100 000 frames per second �fps�. Three regimes of gas
bubble pinch-off behavior were found depending upon the
background liquid viscosity: �1� the radius �r� of the neck
region decreases linearly with the time to pinch-off ��= tp
− t, where t denotes time, and tp stands for the time at pinch-
off� for a bubble in a high-viscosity fluid, r��; �2� for a
bubble in a low-viscosity fluid, the radius of the pinch neck
decreases as r��1/2; and �3� for a bubble immersed in an
intermediate-viscosity fluid, a long and thin thread is discov-
ered. Extensive experimental studies by Thoroddsen et al. �8�
investigated the dynamics and the shape of the neck region
while an air bubble pinches off slowly in various glycerin-
water mixtures driven by buoyancy using an ultrahigh-speed
video with up to one million fps. The effects of liquid vis-
cosity on the pinch-off speed and neck shape are character-
ized. For gas bubble pinch-off in water, the radius of the
neck decreases with a power law behavior r��� with an
exponent in the range of �=0.57�0.03, which is slightly
larger than one-half predicted by Rayleigh-Plesset theory �7�.
The pinch-off speed starts to slow down at a viscosity of
about ten times that of water. A further increment of liquid
viscosity also leads to a change in the power law. The power
law exponent ��� increases and approaches 1.0 for viscosity
higher than 70 cP. Thoroddsen et al. also found that the
variation of gas density has a minimal effect on the bubble
pinch-off. In general, the experimental results �7,8� about the
effects of liquid viscosity on gas bubble pinch-off in viscous
liquids agree well. The evolution of the bubble profile is not
well understood so far since the pinching-off mechanism is
governed by the balancing of the gravitational force, viscous
stress, surface tension, flow inertia, and hydrostatic pressure
�5�. Due to the difficulty of isolating the effects of surface
tension in experiments, there are very limited reports of ex-
perimental studies on the effects of surface tension on bubble
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pinch-off behavior despite its important role. In addition, a
careful study of the previous works as shown in Fig. 5 of
Burton et al. �7� and Fig. 5 of Chen et al. �3� shows that there
is a significant transition of the power law exponent when
the neck radius is about 100–150 �m during the pinch-off
process of a bubble or droplet. Chen et al. �3� explained this
change as due to a transition from potential to inertial vis-
cous flow. However, a better understanding about the transi-
tion of the power law exponent around the neck radius of
150 �m with bubble pinch-off in an intermediate-viscous
liquid has not been established so far; here the assumptions
for both potential flow and Stokes flow may become invalid.

Early work by Longuet-Higgins et al. �9� studied the
bubble growth and detachment from an underwater nozzle
analytically based upon the balance of pressure and capillary
force in the limit of very low gas flow rate �quasistatic limit�.
Oguz and Prosperetti �10� presented a numerical modeling
approach, a boundary integral potential calculation, to ana-
lyze bubble growth and departure from a submerged needle
under different gas flow rates. Although they neglected vis-
cous effects, the simulation showed remarkable agreement
with the earlier experiment reported in �9�. Wong et al. �11�
and Sierou and Lister �12� also used a boundary integral
method to study the viscous capillary pinch-off and its self-
similarity. Using a slender-body theory, Eggers et al. �13�
theoretically investigated the collapse of an axisymmetric
bubble inside a fluid with low viscosity, and proposed a cor-
rection of the power law exponent, i.e., �=1 /2
+1 / �4�−ln ��. Axisymmetric bubble pinch-off at high Rey-
nolds numbers was also studied by Gordillo and co-workers
�14,15�, and they found that the bubble pinching neck radius
r varies with � as ��r2�−ln r2. Bergmann et al. �16� inves-
tigated the breakup of a giant bubble and they found that the
collapse is not self-similar in a strict sense for a finite Froude
number. They also proposed that the radius evolution of the
neck region is only a function of the Froude number. A
bubble or drop in a straining flow at high Reynolds numbers
was studied by Rodriguez-Rodriguez et al. �17� with the as-
sumption of axisymmetric and irrotational flow. They found
that a bubble breaks only if the inertia of the continuous flow
is sufficiently large to overcome the surface tension, and the
breakup time depends only on the Weber number. Hence, the
above-mentioned complex bubble pinch-off behavior and dy-
namics actually result from the combined effects of viscous
stress, capillary force, inertia, and pressure. Most of the pre-
vious numerical methods and analytical approaches are suit-
able for certain flow regimes that are dominated by one or
two kinds of force. The majority of the previous work on
bubble pinch-off in another more viscous fluid was experi-
mental and analytical, and most of the numerical solutions
were based on the inviscid assumption. With the rapid ad-
vance of numerical methods and affordable computing re-
sources, the solution of the full Navier-Stokes equation for
multiphase flows is becoming one of the promising alterna-
tive approaches to understanding the detail of the bubble
pinch-off dynamics for wider flow regimes.

Suryo et al. �18� used a finite-element method to study the
dynamics of an annular compound jet whose core is inviscid
gas and whose shell is a liquid of finite viscosity. By solving
the Navier-Stokes equation for the gas phase with the proper

boundary condition on the interface, they showed that the
pinch-off dynamics is linear, non-self-similar, and nonuniver-
sal. Gerlach et al. �19� applied a combined volume-of-fluid
and level-set method to simulate the process of bubble for-
mation, detachment, and rise from a submerged orifice with a
constant gas flow rate in an axisymmetric coordinate system.
The influences of fluid properties �density, viscosity, surface
tension� were examined individually.

In this paper, numerical simulations are applied to analyze
the buoyancy-driven pinch-off of a gas bubble from a tiny
nozzle immersed in another quiescent viscous fluid. The two-
dimensional axisymmetric Navier-Stokes equations for both
gas and liquid phases are solved by a finite-volume scheme,
and the bubble shape is captured with an improved front
tracking method �20,21�. The temporal variations of bubble
shape during bubble growth and pinch-off predicted by simu-
lations are compared with experimental observations in both
time and spatial domains. Special attention is focused on the
accuracy of numerical predictions on the bubble necking and
pinch-off, and good agreement is achieved over a large range
of experimental conditions with different liquid viscosities.
The effect of the density ratio, viscosity ratio, and surface
tension on the dynamics of two-phase flows, such as the
bubble rising and droplet dynamics, is an interesting subject
for researchers in the field �22–24�. In this paper, by varying
only one of the fluid properties such as liquid viscosity, the
surface tension coefficient, and bubble density in each simu-
lation, the effects of these three factors on the bubble
breakup dynamics are investigated separately, which is a
challenge in experiments but important in understanding the
physics. It is found that both viscosity and surface tension
play significant roles in the bubble breakup, while the effect
of bubble density is minimal. Higher surface tension or vis-
cosity tends to slow down the pinch-off process and to create
larger bubbles.

II. NUMERICAL METHOD AND PROBLEM
FORMULATION

The physical problem of a bubble pinch-off from a capil-
lary nozzle submerged in a viscous liquid due to buoyancy is
sketched in Fig. 1. In the present study, the capillary nozzle
has a radius of ro=1.35�10−3 m. The simulation domain
indicated as the gray zone in Fig. 1 has a radius of 3ro and a
height of 12ro. The densities of the bubble phase and the
outer liquid are �g and �l, respectively, and the viscosities of
the two phases are �g and �l, respectively. The density ratio
is defined as �=�g /�l, and the viscosity ratio as 	=�g /�l.
The bubble top rising distance x is also illustrated in Fig. 1 as
the length from the top tip of the bubble to the nozzle exit,
and r represents the neck radius. The two fluids are assumed
to be immiscible and incompressible, and the problem is as-
sumed to be axisymmetric as the bubble grows at a very slow
rate, about 10 s for release of one bubble. The initial flow
fields for both liquid and gas phases are assumed to be sta-
tionary. The initial position of the gas-liquid interface is as-
sumed flat at the capillary nozzle outlet. A no-slip boundary
condition is applied to the outer walls. As the problem is
buoyancy driven, the flow rate through the nozzle is kept low
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to minimize any inertial effect. The governing equations for
the fluid flow system are

� · u = 0, �1�

���u�
�t

+ � · �uu = − �p + � · ����u + �uT��

+� 
� fn f��x − x f�dsf + �� − �l�g ,

�2�

where u is the fluid velocity, p denotes pressure, � stands for
the density and � for the viscosity of the medium, g is the
gravitational acceleration, sf denotes the arc length measured
on the interface, � f stands for the curvature of the interface,

 is the surface tension coefficient and is assumed to be a
constant to avoid Marangoni effects, n stands for the unit
normal vector on the interface, x is the position vector on the
interface, and ��x−x f� stands for the delta function that is
nonzero only when x=x f.

We nondimensionalize the equations by introducing di-
mensionless characteristic variables as follows:

x� =
x

ro
, u� =

u
�gro

, t� =� g

ro
t, �� =

�

�l
,

p� =
p

�lgro
, �� =

�

�l
, �� = ro�, g� =

g

g
,

where ro is the radius of the capillary nozzle and g= �g�.
Thus we may reformulate the Navier-Stokes equations as

� · u� = 0, �3�

����u��
�t�

+ � · ��u�u� = − �p� +
1

Ar
� · �����u� + �Tu���

+
1

Bo
�




� f
�n f��x� − x f

��dsf

+ ��� − 1�g�. �4�

The Archimedes number �Ar� and Bond number �Bo�
used here are thus defined as

Ar =
�lg

1/2ro
3/2

�l
and Bo =

�lgro
2



.

Hence, the problem of bubble pinch-off can be specified by
four nondimensional numbers such as the density ratio ��
=�g /�l�, viscosity ratio �	=�g /�l�, Archimedes number, and
Bond number. The Archimedes number denotes the impor-
tance of the buoyancy force over viscous force, and the Bond
number represents the relative importance of the buoyancy
and surface tension forces.

The numerical method solves one set of Navier-Stokes
equations �3� and �4� by treating the two phases as one fluid
with variable material properties. Here, only a brief review
of the method is given, and the details of the method are
described in �21�. The fluid properties are set and smoothed
according to the position of the interface. Surface tension is
computed on the front and then distributed to the fixed grid
using the Dirac � function �25,26�. The unsteady Navier-
Stokes equations are solved by a finite-volume method using
an improved SIMPLE scheme �27�. By applying this semi-
implicit scheme, the numerical method is more robust for
solving two-phase flow problems with large density and vis-
cosity differences. The interface is advected using the veloc-
ity interpolated from the neighboring flow field. The front
mesh size is adapted through coarsening and refining to deal
with the bubble front deformation. The numerical method
was tested and validated by a number of rising bubble cases
�21�.

In the current study, a uniform Cartesian mesh grid of
360�90 has been used to discretize the simulation domain
for the axisymmetric model as shown in Fig. 1. The radius of
the nozzle outlet is resolved with 30 grid points. In addition,
a constant, nondimensionalized time step ��t�� around 0.01
is used in the simulation. Each simulation takes about 11 000
time steps to predict the overall bubble growth from the ini-
tial gas injection to final bubble pinch-off, while the pinch-
off process from necking to breakup normally takes about
100–300 time steps. The simulation is performed on a SGI
Altix 3700 computer using one processor. The simulation
time for one case normally takes about 20–30 CPU hours.

III. RESULTS AND DISCUSSION

In this section, the numerical method is first validated
against the experimental results of Thoroddsen et al. �8� for
the simulation of bubble pinch-off. Then, by varying only
one property of the fluids a time, we investigate the effects of
the bulk fluid viscosity, the surface tension, and the bubble
phase density on the bubble pinch-off dynamics.

FIG. 1. �Color online� Schematic diagram of a bubble pinch-off
from a capillary tube �ro=1.35�10−3 m� submerged in a viscous
liquid due to buoyancy. Here, r represents the bubble neck radius.
The bubble top rising distance �x� is shown as the length from the
bubble top tip to the nozzle exit.
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A. Validation of numerical method

Experimental observations of an air bubble released from
a nozzle submerged in water were reported in the early ex-
perimental work of Longuet-Higgins et al. �9�. The later nu-
merical study by Oguz and Prosperetti �10� predicted the
bubble growth and pinch-off dynamics by means of a
boundary-integral potential flow calculation, neglecting the
viscous effects and assuming the flow to be irrotational. In
this paper, we predict the bubble pinch-off by solving the full
Navier-Stokes equations for both the bubble and the liquid
phases. Figure 2�a� shows the experimentally observed air
bubble pinch-off process in water by Thoroddsen et al. �8�.
The bubble shape variation during the pinch-off process
predicted by the current simulation is shown in Fig. 2�b�,
with a direct comparison with the experiments. The simula-
tion and experiment were performed under the same condi-

tion: ro=1.35�10−3 mm, �g=1.005 kg /m3, �l=1.0
�103 kg /m3, �g=0.0142 cP and �l=1.48 cP, 
=6.5
�10−2 N /m, and g=9.8 m /s2. It can be concluded from
Fig. 2�b� that the agreement between the numerical predic-
tions and experimental observations is quite good in both
spatial and time domains.

In order to test the accuracy and robustness of the numeri-
cal method, numerical predictions of bubble pinch-off were
validated against the experiments over a range of liquid vis-
cosities, rather than just one specific condition. A number of
simulations have been conducted in this study according to
the exact experimental conditions as reported by Thoroddsen
et al. �8� to investigate the effects of liquid viscosity on
bubble pinch-off behavior. In fact, in their series of experi-
ments, not only was the liquid viscosity changed, but also the
other liquid properties, e.g., the liquid density and the surface
tension coefficient may vary slightly with the concentration

t = 0 mst = -1 mst = -3 mst = -7 ms

t = 13 mst = 9 mst = 5 mst = 1 ms

t = 0mst = -1mst = -3mst = -7ms

t = 13mst = 9mst = 5mst = 1ms

(a)

(b)

FIG. 2. �Color online� �a� Snapshots of the experimentally observed air bubble pinch-off process in water; �b� comparison of the
bubble shapes predicted by simulation �dotted line� and observed in experiments �solid line�. Both experiment and simulation were per-
formed under the conditions ro=1.35�10−3 m, �g=1.005 kg /m3, �l=1.0�103 kg /m3, �g=0.0142 cP, �l=1.48 cP, 
=6.5
�10−2 N /m, and g=9.8 m /s2.
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of the water-glycerin mixtures and the environmental tem-
perature. Figure 3 shows a comparison of the variation of
bubble shapes before pinch-off predicted by simulations
�dotted line� and observed in experiments �solid line� under
conditions of different mixture compositions: Fig. 3�a�, 75%
glycerin and 25% water ��l=26 cP�; Fig. 3�b�, 84% glycerin
and 16% water ��l=68 cP�; and Fig. 3�c�, 99% glycerin and
1% water ��l=3400 cP�. It can be seen from Fig. 3 that our
simulated bubble shapes agree well with the experimental
observations within a large range of fluid viscosity. This
comparison further validates the accuracy of our numerical
method. And this numerical method is further applied to in-
vestigate the effects of the viscosity, the surface tension co-
efficient, and the gas density on the bubble pinch-off dynam-
ics.

In addition, a detailed comparison of the necking history
of the neck radius during pinch-off between the experimental
results and the numerical simulations is shown in Fig. 4,
with an inset showing a zoomed-in view for the period when
the pinch-off process occurs during 0���4000 �s. The

parameters for this case are 
=6.5�10−2 N /m, �l
=1200 kg /m3, �g=1.0 kg /m3, �g=0.01 cP, and �l=68 cP.
In experiments, the bubble pinch-off process was recorded
twice using different video capturing speeds, 2000 fps for the
overall process and 100 000 fps for the detailed process at
the pinch-off point. As shown in Fig. 4, the agreement for
neck radius greater than 110 �m is excellent, which further
validates the good accuracy of our numerical method. It
should be noted that, due to the current numerical technology
and the limited available computational resources, it is a
challenge to continue the simulation when the neck radius is
smaller than 110 �m �8% of the nozzle radius�. With the
current numerical method, in order to accurately capture the
physics at the pinch-off region for a radius smaller than
110 �m, a very fine mesh is needed. In order to capture the
bubble growth behavior, a large computational domain is
necessary. In addition, the actual pinch-off process happens
within a shorter time compared to the bubble growth, so that
the time step should be small enough to resolve the physics.
Thus, the computational time will be significantly increased

( a )

( b )

( c )

t = -0.3 mst = -1.5 mst = -3.8 ms

t = -1.0 mst = -6.03 mst = -8.5 ms

t = -0.0 mst = -15.8mst = -17.4 ms

FIG. 3. �Color online� Com-
parison of the temporal variations
of bubble shapes before bubble
pinch-off predicted by simulations
�dotted line� and observed in ex-
periments �solid line� under the
conditions of different glycerin-
water compositions, �a� 75% glyc-
erin and 25% water ��l=26 cP�;
�b� 84% glycerin and 16% water
��l=68 cP�; and �c� 99% glycerin
and 1% water ��l=3400 cP�.
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by solving the full Navier-Stokes equations in a domain 16
mm in length and 8 mm in width with higher resolution in
both time and space. An adaptive mesh method and parallel
computing could be used to address this challenge; this is our
ongoing research project, and we will address this in future
work. Figure 5 shows the power law curve fittings for the
experimental results �using 100 000 fps� with a neck radius
less than 148 �m, and for both the numerical simulations
and experimental results �using 2000 fps� with a neck radius
greater than 110 �m, respectively. The two fitted curves
have different slopes, and the slope for the numerical simu-
lation �110�r�500 �m� is smaller than the experimental
one �r�148 �m�. The slope is 0.88 for the experimental
results obtained at the video capturing speed of 100 000 fps,
and 0.58 for the numerical predictions. A comparison with
the previous work of Burton et al. �7� and Chen et al. �3�
shows that a similar transition of the power law fitting expo-
nent is also found in their pinch-off studies of bubble and
droplet. As mentioned previously, due to the limitation of the
current available numerical technique and the limited com-
putational resources, all the power law fittings obtained from
the simulation results discussed hereafter are performed for
the neck radius varying in the range of 110�r�500 �m
during bubble pinch-off.

B. Viscosity effects

As we are interested in a low-viscosity bubble pinching
off inside a more viscous fluid �e.g., an air bubble in water�,
the viscosity of the liquid phase will affect the bubble pinch-
off dynamics to some extent. Burton et al. �7� studied the
viscosity effect on the bubble breakup using different fluids.
They found that the bulk fluid viscosity affects the breakup
process and results in three different regimes. However, the
surface tension coefficient varies within a factor of 2 of the
surface tension of water in their experiments. By changing
the concentration of the water-glycerin mixture, Thoroddsen
et al. �8� investigated the liquid viscosity effect on the bubble

breakup dynamics. However, the Bond number is not a con-
stant in their experiments due to the fact that the density and
surface tension coefficient of the mixture may change with
the glycerin and water concentrations in the mixture. In our
numerical simulations, by varying the liquid phase viscosity
but keeping other fluid properties constant, we can investi-
gate the effect of viscosity alone on the bubble pinch-off
dynamics.

Figure 6 shows the neck radius versus time before bubble
pinch-off for a wide range of viscosities, i.e., �l=4.2, 6.8,
17, 68, 340, and 850 cP. The bubble phase viscosity is kept
as a constant of 0.01 cP. The symbols stand for the numerical
results shoown on a logarithmic scale, while the lines denote
the fitted curves using a power law. In this study, the Bond
number is fixed to be 0.36, and the density ratio is 8.3
�10−4 for all the simulations. The corresponding viscosity
ratios 	 are 2.4�10−3, 1.5�10−3, 5.9�10−4, 1.5�10−4,
2.9�10−5, and 1.2�10−5, respectively. It can be seen from
Fig. 6 that the radius of the neck region decreases with time
as a power law, as the fitted lines are straight in the log-log
plot. Figure 7 depicts the variation of exponent � versus the
liquid phase viscosity. It is found that the exponent � varies
with the fluid viscosity �l differently in three regimes. A
small exponent ��0.55� is obtained for the low-viscosity
case ��l�68 cP�, and a large exponent ��0.95� for high
viscosity ��l�500 cP�. A transition of the exponent � from
the small value to the large value is found in the viscosity
range of 68��l�500 cP. Overall, the results are in quali-
tative agreement with those reported in �7� and �8�. However,
it should be noted that there are some differences in the
power law exponents when the results obtained from the cur-
rent simulation are compared with those from the experi-
ments. According to Burton et al. �7�, there is a sharp change
of the exponent for the liquid viscosity in the range of 10–
100 cP, while a smoother change is found by Thoroddsen et
al. �8�. It can be seen from Fig. 7 that the significant change
of the power law exponent occurs when 68��l�500 cP,
and the change is rather smooth. As stated in the previous
section, this difference between the simulation prediction and

FIG. 4. �Color online� Detailed comparison of the necking ra-
dius between the experiments and the numerical simulation. Ar
=2.7, Bo=0.36, �l=1200 kg /m3, �g=1.0 kg /m3, �g=0.01 cP,
and �l=68 cP.

FIG. 5. �Color online� Power law curving fitting for experimen-
tal results and the numerical simulations. It shows r� t0.88 when
r�110 �m, and r� t0.58 when 110�r�500 �m. Ar=2.7,
Bo=0.36, �l=1200 kg /m3, �g=1.0 kg /m3, �g=0.01 cP, and
�l=68 cP.
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experimental observation reported in �7,8� is mainly due to
the power law fitting for the numerical simulation results is
done for the neck radius in the range of 110�r�500 �m,
while experimental results is obtained for the neck radius in
the range of r�148 �m, as illustrated in Fig. 5.

When the surface tension coefficient is fixed in all the
simulations, the other two major competing forces are buoy-
ancy and viscous force. In order to evaluate the importance
of the two forces, a modified Archimedes �Ar�� number is

introduced as Ar�= ��l−�g�g1/2ro
3/2 /�l, which stands for the

ratio between buoyancy force and viscous force. Since �l
��g, Ar�	Ar=�lg

1/2ro
3/2 /�l. A similar definition of the

Archimedes number is also adopted in the previous work of
Bonometti and Magnaudet �28�. Figure 7, where Ar is plotted
on the top x axis, also shows the variation of the exponent �
versus Ar. It can be clearly seen from Fig. 7 that a great
change in exponent occurs when 0.37�Ar�2.7, i.e., O�1�.
This indicates that the liquid viscosity has significant effects
on the bubble pinch-off process, and thus affects the power-
law exponents ��� in a noticeable way. For large viscosity
�l�500 cP where Ar�O�1�, the bubble neck shrinks lin-
early with the pinch-off time. While for the low liquid vis-
cosity �l�68 cP where Ar�O�1�, the effect of viscosity
force on the bubble pinch-off will become less significant
since the power law exponent varies in a small range of
0.5–0.6 as shown in Fig. 7. The balance between the surface
tension force and the buoyancy force will be the dominant
factor in controlling the bubble pinch-off process.

Figure 8 shows the effect of viscosity on the bubble top
rising distance �x� with time during pinch-off. For the low-
viscosity cases, a transition point, where the slope of the
curve changes rapidly, can be found in Fig. 8. Before this
transition point, the bubble growth is dominated by the sur-
face tension and buoyancy force. After the transition point,
the bubble size is big enough, and it starts to neck and pinch
off. As the bubble neck radius is reduced and the surface
tension effect on the bubble top rising becomes minimal, the
bubble top rises quickly as a result of the strong buoyancy
force and the low viscous force. On the other hand, when the
liquid viscosity is high, the bubble rises smoothly, and no
sharp transition point is observed. This is due to the high
liquid viscosity which retards the bubble pinch-off process
significantly. A careful study of Fig. 8 shows that the viscos-
ity has minimal effect on the bubble top rising distance at the
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FIG. 6. �Color online� Effect of liquid viscosity on the bubble
neck radius �r� shrinkage with time �t� during pinch-off. The non-
dimensional time ���� and radius �r�� are also shown. The liquid
viscosity changes at �l=4.2 ���, 6.8 ���, 17.0 ���, 68.0 ���,
340.0 ���, and 850.0 cP ���, and the slopes of the fitted lines are
0.51, 0.55, 0.58, 0.59, 0.71, and 0.95, respectively. The correspond-
ing Archimedes numbers �Ar� are 44.3, 27.4, 11.0, 2.74, 0.5, and
0.2. The corresponding viscosity ratios are 2.4�10−3, 1.5�10−3,
5.9�10−4, 1.5�10−4, 2.9�10−5, and 1.2�10−5. The top and bot-
tom dashed lines have slopes of 0.5 and 1.0, respectively. Other
parameters are fixed as Bo=0.36, �=8.3�10−4; �l=1200 kg /m3,
�g=1.0 kg /m3, �g=0.01 cP, and ro=1.35�10−3 m.
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initial bubble growth stage, which is dominated by surface
tension. After the transition points, the bubble top rises much
faster in the lower-viscosity liquid than in the higher-
viscosity liquid. At the beginning stage of the bubble growth,
since the velocity is small and so is the velocity gradient, the
viscous force is small compared to other forces like buoy-
ancy and surface tension forces. When the necking occurs,
the velocity near the neck region becomes large, and so does
the velocity gradient. Hence, the balance of viscous force
and surface tension is important in controlling the necking
process during bubble pinch-off. Zhang and Stone �23� also
pointed out that the viscous force only has a significant effect
at a late stage near pinching. Hence, the viscous force is
significant at the necking stage for finite viscosity, and slows
down the necking and pinch-off. It should also be pointed
out that for the low-viscosity cases, such as �l�17 cP, the
viscosity effect on the top rising distance is minimal in this
study, while for the high-viscosity case, the effect is signifi-
cant.

The effect of liquid viscosity on the size of the bubble
pinched off is one of the most interesting research topics
over decades and has been investigated by a number of re-
searchers. An extensive review on this topic was given by
Kulkarni and Joshi �29�. The experimental results by various
researchers have indicated different views �29�, and these
views are that �1� the bubble size increases with the liquid
viscosity; �2� the liquid viscosity does not affect the bubble
size; �3� the effect of the liquid viscosity on bubble size is
weak; and �4� in the condition of a low flow rate, the bubble
size does not depend on the liquid viscosity for a liquid with
low viscosity, while a larger viscosity results in a greater
bubble for the liquid with high viscosity. Figure 9 shows the
numerical predictions for the effect of the liquid viscosity on
the created bubble volume, where the bottom horizontal axis
shows for the viscosity �l, and the top horizontal axis de-
notes the Archimedes number Ar. It is clear that the change

of the bubble volume is minimal for low liquid viscosity,
while the bubble volume increases with the liquid viscosity
when it is high enough. As the flow rate is very low in our
simulations, our observations agree with the above view �4�
of Siemes and Kaufmann �30�. Because the viscosity tends to
slow down the bubble breakup for high viscosity as men-
tioned in the last section, there will be more gas accumulated
in the bubble for the higher-viscosity cases, and thus a larger
bubble is created. It should be noted from Fig. 9 that the
volume changes very sharply at viscosity greater than 68 cP,
and this sharp transition again indicates that the viscous
forces are becoming dominant for high-viscosity cases.

C. Surface tension effects

It is obvious that the surface tension is one of the impor-
tant factors affecting the bubble pinch-off. In order to study
the surface tension effect on bubble pinch-off, the surface
tension coefficient is varied from 5 to 120 mN/m while the
other fluid properties are kept constant. It should be noted
that for each simulation the surface tension coefficient is as-
sumed to be uniform on the bubble surface. As a result, all
the nondimensional parameters will remain constant except
the Bond number. For all the simulations, Ar=2.74, and the
viscosity and density ratios are �=1.5�10−4 and 	=8.3
�10−4, respectively.

Figure 10 depicts the variation of the bubble neck radius
versus time before pinch-off under different surface tension
coefficients, i.e., 
=15, 30, 60, and 120 mN/m. The corre-
sponding Bond numbers Bo are 1.43, 0.71, 0.36, and 0.18,
respectively. The bubble necking radius decreases with time
as a power law for all four cases as the fitted lines are
straight in a log-log plot �as shown in Fig. 10�. It can be seen

µl (cP)

V
(m

m
3 )

101 102 103 10420

40

60

80

100

V*

18.6 1.86 0.186 0.0186

1.9

5.8

9.7

5.8

7.8

Ar

2.9

FIG. 9. Variation of bubble volume versus the liquid viscosity �l

and Ar. The nondimensional volume �V�� is also shown, and it is
nondimensionalized by the volume of a sphere with the nozzle exit
radius. Other parameters are fixed as Bo=0.36, �l=1200 kg /m3,
�g=1.0 kg /m3, �g=0.01 cP, and ro=1.35�10−3 m.
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FIG. 10. �Color online� The effect of surface tension coefficient
on the bubble neck shrinkage with time during bubble pinch-off.
The nondimensional time ���� and radius �r�� are also shown. The
surface tension coefficient varies at 
=120 ���, 60 ���, 30 ���,
15 ��� mN /m, and the corresponding Bond numbers are 0.18,
0.36, 0.71, and 1.43, respectively. The slopes for the four fitted lines
are 0.58, 0.59, 0.65, and 0.73, respectively. Other parameters are
fixed as Ar=2.7, �l=1200 kg /m3, �g=1.0 kg /m3, �l=68 cP,
�g=0.01 cP, and ro=1.35�10−3 m.
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that the surface tension tends to shorten the bubble necking
process. The slopes for the four fitted lines from top to bot-
tom at 0.58, 0.59, 0.65, and 0.73, respectively. Figure 11
shows the effect of the surface tension coefficient on the
power law exponent �, where the corresponding Bond num-
ber is plotted on the top x axis. It should be noted that Bo is
infinity at the left edge of the graph when 
→0. It can be
seen that there is a sharp decrease of the power law exponent
� with increasing surface tension when 
�30 mN /m, and
an almost constant power law exponent ��	0.56–0.6� when

�60 mN /m. The transition region occurs when 30�

�60 mN /m, which corresponds to Bo=0.72–0.36, around
O�1�.

Figure 12 shows the bubble top rising distance for the
four different cases. Unlike the liquid viscosity, the surface
tension affects the top rising distance from the beginning
stage as the bubble grows. There also is a transition point for
each of the four curves, and this transition indicates the be-
ginning of the necking. The surface tension retards the tran-
sition point in a very noticeable manner, as seen from this
figure.

The surface tension effect on the generated bubble vol-
ume is also a very interesting subject, as reviewed by
Kulkarni and Joshi �29�. A number of correlations for bubble
size with respect to the surface tension have been proposed.
As discussed in the last paragraph, the surface tension sig-
nificantly affects the bubble pinch-off process, and thus the
bubble volume. Figure 13 shows the variation of bubble vol-
ume versus the surface tension coefficient, and it can be seen
that the relationship between the volume of the bubble and
the surface tension coefficient is almost linear, which agrees
with Middleman’s theoretical solution �31�. By assuming
very slow motion and a static equilibrium of the droplet,
Middleman found that the force balance of the droplet drip-
ping off from a tube by gravity is �lgV=
 2�ro cos �,
where � is the contact angle. By further assuming that the
drop falls off at �=0, he found that the volume of the created
drop is linearly proportional to the surface tension coeffi-
cient, i.e., V=2
�ro /�lg. Our prediction for the relationship
of the bubble size with the surface tension also agrees with
the correlation given by Tsuge and co-workers for bubble
formation from a submerged orifice �32,33�.

D. Density effects

We have shown in the previous sections that both the
viscosity and the surface tension significantly influent the
bubble pinch-off process. Here, we shall investigate the ef-
fects of the density of the bubble phase on the bubble pinch-
off process. As the Bond number is a function of the density
difference, the density of the bubble phase is varied in such a
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way that the change in the Bond number is not noticeable.
The bubble phase densities are chosen to be 1.0, 10.0, 50.0,
and 100.0 kg /m3. The liquid phase density is kept constant
as 1200 kg /m3. Hence, the density ratios are 8.3�10−4,
8.3�10−3, 4.2�10−2, and 8.3�10−2, respectively. A modi-
fied Bond number is introduced as Bo�= ��l−�g�gro

2 /
, and
the effect on the modified Bond number is small as the den-
sity ratios are less than 10%. For all the simulations, Ar
=2.74, and Bo is around 0.36.

Figure 14 shows the neck radius versus time for the four
different gas densities. The four results are very close, and
this suggests that the gas density has a minimal effect on the
necking process. The bubble top rising distance versus time
is displayed in Fig. 15. Again, the density does not affect the
top rising distance very much. These two figures imply that
the gas phase density will not affect the volume of the cre-
ated bubble. It is no surprise that the bubble volumes for the
four cases are 15.4, 14.7, 14.9, and 15.5 mm3. Thoroddsen
et al. �8� studied the bubble density effect on the pinch-off
process by using two different gases, namely, He and SF6,
and also found that the effect of the density on the breakup is
negligible.

IV. CONCLUSION

A numerical investigation of a low-viscosity gas bubble
pinch-off in a more viscous liquid is presented. The numerics

used a finite-volume method coupled with a front tracking
scheme to capture the interface. The numerical schemes are
validated by comparison to previous experimental results.
The necking radius decreases with time in a power law
mode, which agrees with previous experimental investiga-
tions. The effects of the liquid phase viscosity, the surface
tension coefficient, and the bubble phase density on the
bubble pinch-off were studied. Our results showed that both
the viscosity and surface tension coefficient have significant
effects on the bubble pinch-off. Higher viscosity and surface
tension coefficients tends to retard the necking process, and
thus create a larger bubble, while the density of the bubble
phase plays a minimal role on the bubble breakup. The
power-law exponent is affected not only by the liquid viscos-
ity, but also by the surface tension coefficient. In addition,
our simulation results show that the significant transition of
the power law exponent occurs at Ar=0.37–2.7 of O�1�
when the viscosity is varied, and at Bo=0.36−0.72 of O�1�
when the surface tension coefficient is varied.
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